(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(X), s(Y)) →+ le(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
minus,
quotThey will be analysed ascendingly in the following order:
le < minus
minus < quot
(8) Obligation:
TRS:
Rules:
le(
0',
Y) →
truele(
s(
X),
0') →
falsele(
s(
X),
s(
Y)) →
le(
X,
Y)
minus(
0',
Y) →
0'minus(
s(
X),
Y) →
ifMinus(
le(
s(
X),
Y),
s(
X),
Y)
ifMinus(
true,
s(
X),
Y) →
0'ifMinus(
false,
s(
X),
Y) →
s(
minus(
X,
Y))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
minus(
X,
Y),
s(
Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, minus, quot
They will be analysed ascendingly in the following order:
le < minus
minus < quot
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
le(
0',
Y) →
truele(
s(
X),
0') →
falsele(
s(
X),
s(
Y)) →
le(
X,
Y)
minus(
0',
Y) →
0'minus(
s(
X),
Y) →
ifMinus(
le(
s(
X),
Y),
s(
X),
Y)
ifMinus(
true,
s(
X),
Y) →
0'ifMinus(
false,
s(
X),
Y) →
s(
minus(
X,
Y))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
minus(
X,
Y),
s(
Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, quot
They will be analysed ascendingly in the following order:
minus < quot
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(13) Obligation:
TRS:
Rules:
le(
0',
Y) →
truele(
s(
X),
0') →
falsele(
s(
X),
s(
Y)) →
le(
X,
Y)
minus(
0',
Y) →
0'minus(
s(
X),
Y) →
ifMinus(
le(
s(
X),
Y),
s(
X),
Y)
ifMinus(
true,
s(
X),
Y) →
0'ifMinus(
false,
s(
X),
Y) →
s(
minus(
X,
Y))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
minus(
X,
Y),
s(
Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
quot
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(15) Obligation:
TRS:
Rules:
le(
0',
Y) →
truele(
s(
X),
0') →
falsele(
s(
X),
s(
Y)) →
le(
X,
Y)
minus(
0',
Y) →
0'minus(
s(
X),
Y) →
ifMinus(
le(
s(
X),
Y),
s(
X),
Y)
ifMinus(
true,
s(
X),
Y) →
0'ifMinus(
false,
s(
X),
Y) →
s(
minus(
X,
Y))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
minus(
X,
Y),
s(
Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
le(
0',
Y) →
truele(
s(
X),
0') →
falsele(
s(
X),
s(
Y)) →
le(
X,
Y)
minus(
0',
Y) →
0'minus(
s(
X),
Y) →
ifMinus(
le(
s(
X),
Y),
s(
X),
Y)
ifMinus(
true,
s(
X),
Y) →
0'ifMinus(
false,
s(
X),
Y) →
s(
minus(
X,
Y))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
minus(
X,
Y),
s(
Y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)